El superacelerador de hadrones se ha puesto hoy en marcha con el objetivo de hallar el bosón de Higgs.- Es la última pieza del 'puzzle' subatómico y puede abrir por fin la ventana al 'Big Bang'
JAVIER SAMPEDRO / ELPAÍS.com - Madrid - 10/09/2008
Poco más de 50 minutos ha tardado el primer haz de protones en recorrer esta mañana, en el sentido de las agujas del reloj, los 27 kilómetros del túnel circular que constituye el Gran Colisionador de Hadrones (LHC en sus siglas inglesas), el acelerador de partículas europeo que busca reproducir las condiciones físicas que dieron lugar al Universo. Este primer paso, solventado con éxito, ha sido recibido con aplausos entre el público congregado en el Laboratorio Europeo de Física de Partículas (CERN).
El segundo haz de protones se ha emitido a las 12.30 en el sentido contrario a las agujas del reloj. En torno a las 14.45, más de dos horas después, ya había completado tres cuartas partes de la circunferencia del LHC. A pesar del éxito de la jornada, todavía habrá que esperar para el primer choque de partículas. "Si conseguimos que este segundo haz haga un círculo completo en el sentido contrario habremos conseguido más de los que teníamos previsto para el día de hoy", ha asegurado la física española Teresa Rodrigo, que trabaja en el experimento CMS del acelerador, uno de los cuatro detectores gigantes del LHC.
La historia de este mastodóntico proyecto, que por fin echa a andar, se remonta a varias décadas en el pasado. La sala de reuniones del partido tory está llena de militantes que charlan tranquilamente cuando, de pronto, la señora Thatcher entra por la puerta. A medida que Thatcher camina por la habitación, los militantes más cercanos forman corrillos a su alrededor y, en consecuencia, dificultan el movimiento de su líder.
Los militantes representan el campo de Higgs, una forma de energía que impregna todo el espacio y confiere masa a las partículas (como Thatcher). Un protón, por ejemplo, no tendría masa si no fuera por el campo de Higgs. Sin ese campo misterioso, todos seríamos livianos como el fotón, y nos moveríamos, como él, a la velocidad de la luz.
La anterior parábola, debida al físico británico David Miller, es un pequeño clásico de la divulgación científica. En 1993, el ministro británico de Ciencia, William Waldegrave, reparó en que su departamento estaba gastando mucho dinero en la búsqueda de una cosa llamada "el bosón de Higgs", y lanzó el desafío: "No sé si financiaré la búsqueda del bosón de Higgs, pero le pago una botella de champán a quien logre explicarme qué es". Miller se ganó el champán con la historia de la señora Thatcher.
El Gran Colisionador de Hadrones (Large Hadron Collider, o LHC), que ha entrado hoy en funcionamiento, a las 9.30 de la mañana, junto a Ginebra, tiene también otros objetivos, pero el principal es encontrar el bosón de Higgs, apodado "la partícula-Dios" por el premio Nobel Sheldon Glashow. Es una predicción central del modelo estándar con el que los físicos describen el mundo subatómico, y observarlo requiere las altas energías de colisión que alcanzará el LHC, un esfuerzo de 6.000 millones de euros.
Esas altas energías también han llevado a algunas personas a temer que el LHC pueda causar una catástrofe planetaria, mediante la creación de un agujero negro u otros fenómenos. Estos catastrofistas han llegado a presentar dos demandas judiciales contra el acelerador de Ginebra.
El grupo de físicos reunidos en el Consejo Asesor de Seguridad del LHC (LHC Safety Assessment Group, o LSAG) ha concluido, sin embargo, que "incluso si el acelerador llegara a producir microagujeros negros -una posibilidad contraria al modelo estándar de la física de partículas-, estos serían "incapaces de agregar materia en torno a ellos de una forma que resultara peligrosa para la Tierra".
El campo de Higgs -el conjunto de los militantes tories que llenan la habitación- fue postulado en 1963 por media docena de físicos, de los que el británico Peter Higgs ni siquiera era el más destacado (de hecho, hay quien prefiere llamarlo "campo de Higgs-Brout- Englert-Guralnik-Hagen-Kibble"). Pero fue Higgs el primero en hablar del "bosón de Higgs".
El campo de Higgs y el bosón de Higgs son dos formas de ver el mismo fenómeno. Esta dualidad se deriva de uno de los principios más desconcertantes -pero también mejor establecidos- de la física cuántica (la antiguamente llamada "dualidad onda-corpúsculo"). El caso más familiar es el de la doble naturaleza de la luz, que consiste a la vez en un campo electromagnético y en un chorro de partículas, o fotones.
El modelo estándar de la física subatómica divide las partículas en dos grandes grupos: las que constituyen la materia (fermiones, como los quarks) y las que transmiten las fuerzas (bosones, como el fotón). El propuesto bosón de Higgs, por tanto, sería una partícula, y eso es lo que los físicos esperan observar en el nuevo superacelerador de Ginebra.
En la parábola de Miller, el bosón de Higgs se puede visualizar así: imaginemos que, en vez de la señora Thatcher, lo que llega a la habitación es el mero rumor de que Thatcher va a venir. Los militantes más cercanos a la puerta forman un corrillo para oír la noticia. Luego pasan el rumor a los siguientes, que forman un corrillo, etcétera. Ese corrillo virtual que se propaga es el bosón de Higgs. También tiene masa, pero esta vez gracias a sí mismo.
Fue el físico teórico norteamericano Steven Weinberg quien encajó los campos de Higgs en el mismo centro neurálgico del modelo estándar de la física de partículas (o más bien creó con ellos el modelo estándar). El trabajo de Weinberg y sus colegas Abdus Salam y Sheldon Glashow tiene que ver con uno de los principales objetivos de la física actual: la unificación entre las fuerzas fundamentales de la naturaleza, es decir, la formulación de una teoría que explique todas esas fuerzas de una sola tacada.
Los grandes avances en la comprensión científica del mundo suelen consistir en unificaciones de ese tipo. La misma física en su conjunto recibió el impulso definitivo cuando Newton desarrolló el concepto de gravedad, que explicaba a la vez la órbita de la Luna, los movimientos de los planetas y el comportamiento de los objetos en tierra firme: una unificación.
La revolución de la energía eléctrica se debe al trabajo de Faraday y Maxwell, que comprendieron que dos fuerzas previamente percibidas como dispares, la electricidad y el magnetismo, eran en realidad dos formas de mirar a una única fuerza: el electromagnetismo. La gravedad y el electromagnetismo se convirtieron en las dos "fuerzas fundamentales" de la naturaleza conocidas a finales del siglo XIX.
Pero la exploración interna de la estructura del átomo reveló pronto otras dos "fuerzas fundamentales" más. Se llaman fuerza nuclear "fuerte" y "débil", y son las que mantienen unido el núcleo atómico y provocan los varios tipos de desintegración radiactiva. En total, cuatro fuerzas a unificar.
Cada una de estas fuerzas se asocia a una partícula mensajera (denominada bosón, como vimos antes). La partícula mensajera de la fuerza electromagnética es el fotón. Weinberg y sus colegas se dieron cuenta de que la fuerza nuclear débil podría explicarse mediante una partícula idéntica al fotón en todo excepto en su masa. El fotón no interactúa con el campo de Higgs, y como consecuencia no tiene masa. Pero el nuevo mensajero debía interactuar con el campo de Higgs adquiriendo una masa considerable (unas 90 veces la masa del protón).
Los mensajeros de la fuerza nuclear débil (los bosones W y Z) aparecieron poco después en los aceleradores de partículas, y tenían las propiedades predichas por Weinberg: idénticos al fotón en todo excepto en que tenían cerca de 90 veces la masa del protón.
Weinberg, Salam y Glashow recibieron el premio Nobel en 1979. Su teoría había unificado las fuerzas electromagnética y nuclear débil. El mismo tipo de idea se puede extender a otras partículas y fuerzas fundamentales. El campo de Higgs es por ello un elemento central del modelo estándar de la física de partículas.
Si el bosón de Higgs aparece en el LHC en los próximos años, la última pieza habrá encajado y el modelo estándar habrá recibido el espaldarazo definitivo. En caso contrario, habrá que modificar el modelo en sus fundamentos más básicos.
En la parábola de Miller, la "masa del protón" no es una sustancia que acompaña al protón en su desplazamiento: ahora son estos diez militantes y un segundo después son otros diez distintos. Pero siempre son diez, porque ése es el atractivo típico de la señora Thatcher. Por eso todos los protones tienen la misma masa.
Y también por eso las distintas partículas tienen diferentes masas: porque su atractivo para el campo de Higgs tiene distinta magnitud. El físico teórico Brian Greene -un string theorist, o especialista en la "teoría de cuerdas" que aspira a unificar las cuatro fuerzas fundamentales, incluida la gravedad- lo ha explicado con una variante de la parábola de Miller en que los militantes tories son reemplazados por una turbamulta de paparazzi que esperan a la entrada de un estreno de Hollywood.
Si llega un coche y se baja Brad Pitt, los paparazzi se agregarán en torno a él y apenas le dejarán moverse: el actor habrá adquirido una gran masa. Pero si el que aparece es una vieja gloria de Hollywood de la que no se acuerda ni su agente artístico, los paparazzi le dejarán pasar sin apenas oponer resistencia. La masa de la vieja gloria será por tanto muy pequeña. Y uno puede imaginar todo un espectro de masas intermedias.
El bosón de Higgs es también un componente esencial de las actuales teorías sobre el origen del universo, conocidas genéricamente como "inflación cósmica" o "universo inflacionario". La inflación -el bang del big bang, en palabras de Greene- es una expansión cósmica rapidísima, más veloz que la velocidad de la luz, que según estos modelos ocurrió una fracción de segundo después del origen del cosmos.
La inflación parece una teoría extraña, pero es necesaria para explicar que el universo actual sea homogéneo a gran escala: es decir, que consista en todas partes del mismo tipo de agregados de galaxias y supercúmulos de galaxias, pese a que las regiones distantes del cosmos no han tenido ocasión de interactuar para ponerse de acuerdo sobre cuáles han de ser sus propiedades básicas.
La carrera de los físicos para experimentar en aceleradores de partículas cada vez más potentes puede verse como un viaje hacia atrás en el tiempo. Como el universo era en su origen inconcebiblemente pequeño y denso en energía, y a partir de ahí empezó a expandirse y enfriarse, cada nuevo acelerador emula al universo primigenio en una fase algo anterior de su evolución inicial.
Visto desde el prisma de la unificación de las fuerzas fundamentales, cada incremento en la energía de las colisiones en los aceleradores nos acerca un poco más a la época remota en que todas las fuerzas eran en realidad la misma: como la electricidad y el magnetismo son la misma fuerza en la actualidad, y como el electromagnetismo y la fuerza nuclear débil resultan ser lo mismo a las energías de colisión que se alcanzaron en los años setenta.
En el origen del universo, todas las partículas y todas las fuerzas eran iguales: los campos de fuerza estaban evaporados a aquellas altísimas temperaturas, y sólo se fueron condensando después (donde "después" significa una fracción de segundo).
El campo (o una serie de campos) de Higgs fue el primero en condensarse, y ello eliminó en cascada la simplicidad del universo primitivo: las partículas elementales adquirieron distintas masas, y también los bosones mensajeros, con lo que la única fuerza primordial se separó en las actuales fuerzas fundamentales.
Todas las partículas elementales conocidas tienen masas distintas. Los protones y los neutrones que constituyen el núcleo atómico no son partículas elementales, sino que están hechos de dos tipos de quarks, up y down (un protón consiste en dos quarks up y uno down; un neutrón consiste en dos down y un up). Esto es lo que había predicho la teoría, pero los aceleradores han revelado además otros cuatro tipos de quarks, y todos tienen masas distintas, que cubren un intervalo entre 0,05 y 190 veces la masa del protón.
Todas esas partículas gratuitas con masas tan disparatadas quedarán explicadas si los experimentos proyectados en el LHC logran encontrar el bosón de Higgs. Quizá el apodo de "partícula Dios" que le puso Lederman le quede un poco grande, pero ni siquiera el santo grial ha sido tan buscado en la historia.
La hora de la verdad para 10.000 físicos de 80 países
ALICIA RIVERA (ENVIADA ESPECIAL) - Ginebra - 10/09/2008
Como prueba de que no espera el apocalipsis, el director del LHC, el gran acelerador europeo de partículas, se dejaba ver ayer sonriente y relajado. Alrededor de las 9.30 de la mañana de hoy se inyectará el primer haz de partículas. Es el momento de la verdad para 10.000 físicos e ingenieros de decenas de países que llevan trabajando desde hace más de 15 años en el desarrollo y construcción de este gigantesco laboratorio con el que quieren ahondar en el conocimiento de las profundidades del átomo.
Especialistas de unos 80 países están volcados en este proyecto que aglutina la veintena de países que son miembros del CERN (Laboratorio Europeo de Física de Partículas, junto a Ginebra), incluido España, cuyos físicos, ingenieros y empresas han hecho aportaciones notables al proyecto.
“Si todo va bien con el haz, será un gran éxito”, explicó ayer el portavoz del CERN, James Gillies. “El segundo haz en dirección opuesta al primero no tiene por qué inyectarse el primer día, pero si todo funciona bien, podría intentarse y entonces el éxito, con los dos haces, sería ya grandísimo”. Para dentro de un mes está previsto provocar las primeras colisiones de las partículas de los haces, colisiones de protones contra protones en que se producirán las partículas y fenómenos que estudiarán los científicos. Para ello hay que tener los haces perfectamente estables dentro del tubo de vacío del acelerador y afinarlos en los cuatro puntos de colisión de la circunferencia.
Un centenar de personas en el centro de control del LHC realizarán todas las pruebas (una docena de ellos directamente en los ordenadores de control de la máquina), pero entre 4.000 y 5.000 personas están hoy en el CERN (2.500 de plantilla y el resto, científicos e ingenieros colaboradores del proyecto, además de unos 250 periodistas). “El ambiente es de máxima tensión y expectación”, dice Gillies. “Es muy emocionante: por fin vamos a ver el LHC funcionando”.
El CERN está justo en la frontera entre Francia y Suiza y el túnel del LHC está entre el lago de Ginebra y las montañas del Jura. Así, los protones del acelerador, a casi la velocidad de la luz, pasarán de un país a otro miles de veces por segundo y chocarán en el centro de los cuatro detectores.
El túnel está cerrado desde hace un par de semanas para cualquier visita excepto los técnicos. Pero en la mañana de hoy, cuando se inyecte el haz, será inaccesible, informa Gillies. Nadie puede estar dentro cuando circulan los haces de partículas porque la radiación que producen en el túnel es nociva. Cuando el acelerador se para, se puede volver a entrar para revisar todo. El LHC está formado por 1.600 enormes imanes superconductores enfriados hasta 271 grados centígrados bajo cero, mediante 130 toneladas de helio líquido.
Para el encendido se han juntado en el CERN miles de científicos pendientes de este gigantesco experimento único en el mundo y varias veces más potente que el de más energía hasta ahora, el Tevatron de Chicago. Unos 1.200 estadounidenses están volcados, ya que el LHC ha puesto a Europa el punto focal internacional de la física de partículas, que desde la II Guerra Mundial estuvo al otro lado del Atlántico. Estados Unidos proyectó y empezó a construir en Tejas un acelerador como el LHC, el SSC, pero el proyecto fue cancelado por su coste. Los europeos lo han logrado, jugando con la ventaja de la concentración de esfuerzos en el CERN y la estrategia de utilizar las instalaciones de unos aceleradores para poner en marcha los siguientes. Aún así el coste ha sido elevado: unos 6.000 millones de euros.
El túnel de 27 kilómetros que hoy concentra la atención de la ciencia mundial alojó el anterior gran colisionador del CERN, el LEP, de la misma longitud, pero de menor energía. Se desmontó el LEP y se ha instalado en su lugar el LHC, con el que los físicos esperan obtener nuevos datos del microcosmos para entender cómo están hechas y cómo funcionan la materia y la energía.
Arranca la búsqueda de la 'partícula Dios'
El superacelerador de hadrones se pone hoy en marcha con el objetivo de hallar el bosón de Higgs - Es la última pieza del 'puzzle' subatómico y puede abrir por fin la ventana al Big Bang
JAVIER SAMPEDRO 10/09/2008
La sala de reuniones del partido tory está llena de militantes que charlan tranquilamente cuando, de pronto, la señora Thatcher entra por la puerta. A medida que Thatcher camina por la habitación, los militantes más cercanos forman corrillos a su alrededor y, en consecuencia, dificultan el movimiento de su líder.
Sin el misterioso campo de Higgs seríamos livianos como el fotón
Para observar la partícula elemental se requieren altas energías de colisión
Incluso si se crean miniagujeros negros, no serían peligrosos
Falta una teoría que explique las grandes fuerzas de la naturaleza
Los militantes representan el campo de Higgs, una forma de energía que impregna todo el espacio y confiere masa a las partículas (como Thatcher). Un protón, por ejemplo, no tendría masa si no fuera por el campo de Higgs. Sin ese campo misterioso, todos seríamos livianos como el fotón, y nos moveríamos, como él, a la velocidad de la luz.
La anterior parábola, debida al físico británico David Miller, es un pequeño clásico de la divulgación científica. En 1993, el ministro británico de Ciencia, William Waldegrave, reparó en que su departamento estaba gastando mucho dinero en la búsqueda de una cosa llamada "el bosón de Higgs", y lanzó el desafío: "No sé si financiaré la búsqueda del bosón de Higgs, pero le pago una botella de champán a quien logre explicarme qué es". Miller se ganó el champán con la historia de la señora Thatcher.
El Gran Colisionador de Hadrones (Large Hadron Collider, o LHC), que entra hoy en funcionamiento junto a Ginebra, tiene también otros objetivos, pero el principal es encontrar el bosón de Higgs, apodado "la partícula-Dios" por el premio Nobel Sheldon Glashow. Es una predicción central del modelo estándar con el que los físicos describen el mundo subatómico, y observarlo requiere las altas energías de colisión que alcanzará el LHC, un esfuerzo de 6.000 millones de euros.
Esas altas energías también han llevado a algunas personas a temer que el LHC pueda causar una catástrofe planetaria, mediante la creación de un agujero negro u otros fenómenos. Estos catastrofistas han llegado a presentar dos demandas judiciales contra el acelerador de Ginebra.
El grupo de físicos reunidos en el Consejo Asesor de Seguridad del LHC (LHC Safety Assessment Group, o LSAG) ha concluido, sin embargo, que "incluso si el acelerador llegara a producir microagujeros negros -una posibilidad contraria al modelo estándar de la física de partículas-, estos serían "incapaces de agregar materia en torno a ellos de una forma que resultara peligrosa para la Tierra".
El campo de Higgs -el conjunto de los militantes tories que llenan la habitación- fue postulado en 1963 por media docena de físicos, de los que el británico Peter Higgs ni siquiera era el más destacado (de hecho, hay quien prefiere llamarlo "campo de Higgs-Brout- Englert-Guralnik-Hagen-Kibble"). Pero fue Higgs el primero en hablar del "bosón de Higgs".
El campo de Higgs y el bosón de Higgs son dos formas de ver el mismo fenómeno. Esta dualidad se deriva de uno de los principios más desconcertantes -pero también mejor establecidos- de la física cuántica (la antiguamente llamada "dualidad onda-corpúsculo"). El caso más familiar es el de la doble naturaleza de la luz, que consiste a la vez en un campo electromagnético y en un chorro de partículas, o fotones.
El modelo estándar de la física subatómica divide las partículas en dos grandes grupos: las que constituyen la materia (fermiones, como los quarks) y las que transmiten las fuerzas (bosones, como el fotón). El propuesto bosón de Higgs, por tanto, sería una partícula, y eso es lo que los físicos esperan observar en el nuevo superacelerador de Ginebra.
En la parábola de Miller, el bosón de Higgs se puede visualizar así: imaginemos que, en vez de la señora Thatcher, lo que llega a la habitación es el mero rumor de que Thatcher va a venir. Los militantes más cercanos a la puerta forman un corrillo para oír la noticia. Luego pasan el rumor a los siguientes, que forman un corrillo, etcétera. Ese corrillo virtual que se propaga es el bosón de Higgs. También tiene masa, pero esta vez gracias a sí mismo.
Fue el físico teórico norteamericano Steven Weinberg quien encajó los campos de Higgs en el mismo centro neurálgico del modelo estándar de la física de partículas (o más bien creó con ellos el modelo estándar). El trabajo de Weinberg y sus colegas Abdus Salam y Sheldon Glashow tiene que ver con uno de los principales objetivos de la física actual: la unificación entre las fuerzas fundamentales de la naturaleza, es decir, la formulación de una teoría que explique todas esas fuerzas de una sola tacada.
Los grandes avances en la comprensión científica del mundo suelen consistir en unificaciones de ese tipo. La misma física en su conjunto recibió el impulso definitivo cuando Newton desarrolló el concepto de gravedad, que explicaba a la vez la órbita de la Luna, los movimientos de los planetas y el comportamiento de los objetos en tierra firme: una unificación.
La revolución de la energía eléctrica se debe al trabajo de Faraday y Maxwell, que comprendieron que dos fuerzas previamente percibidas como dispares, la electricidad y el magnetismo, eran en realidad dos formas de mirar a una única fuerza: el electromagnetismo. La gravedad y el electromagnetismo se convirtieron en las dos "fuerzas fundamentales" de la naturaleza conocidas a finales del siglo XIX.
Pero la exploración interna de la estructura del átomo reveló pronto otras dos "fuerzas fundamentales" más. Se llaman fuerza nuclear "fuerte" y "débil", y son las que mantienen unido el núcleo atómico y provocan los varios tipos de desintegración radiactiva. En total, cuatro fuerzas a unificar.
Cada una de estas fuerzas se asocia a una partícula mensajera (denominada bosón, como vimos antes). La partícula mensajera de la fuerza electromagnética es el fotón. Weinberg y sus colegas se dieron cuenta de que la fuerza nuclear débil podría explicarse mediante una partícula idéntica al fotón en todo excepto en su masa. El fotón no interactúa con el campo de Higgs, y como consecuencia no tiene masa. Pero el nuevo mensajero debía interactuar con el campo de Higgs adquiriendo una masa considerable (unas 90 veces la masa del protón).
Los mensajeros de la fuerza nuclear débil (los bosones W y Z) aparecieron poco después en los aceleradores de partículas, y tenían las propiedades predichas por Weinberg: idénticos al fotón en todo excepto en que tenían cerca de 90 veces la masa del protón.
Weinberg, Salam y Glashow recibieron el premio Nobel en 1979. Su teoría había unificado las fuerzas electromagnética y nuclear débil. El mismo tipo de idea se puede extender a otras partículas y fuerzas fundamentales. El campo de Higgs es por ello un elemento central del modelo estándar de la física de partículas.
Si el bosón de Higgs aparece en el LHC en los próximos años, la última pieza habrá encajado y el modelo estándar habrá recibido el espaldarazo definitivo. En caso contrario, habrá que modificar el modelo en sus fundamentos más básicos.
En la parábola de Miller, la "masa del protón" no es una sustancia que acompaña al protón en su desplazamiento: ahora son estos diez militantes y un segundo después son otros diez distintos. Pero siempre son diez, porque ése es el atractivo típico de la señora Thatcher. Por eso todos los protones tienen la misma masa.
Y también por eso las distintas partículas tienen diferentes masas: porque su atractivo para el campo de Higgs tiene distinta magnitud. El físico teórico Brian Greene -un string theorist, o especialista en la "teoría de cuerdas" que aspira a unificar las cuatro fuerzas fundamentales, incluida la gravedad- lo ha explicado con una variante de la parábola de Miller en que los militantes tories son reemplazados por una turbamulta de paparazzi que esperan a la entrada de un estreno de Hollywood.
Si llega un coche y se baja Brad Pitt, los paparazzi se agregarán en torno a él y apenas le dejarán moverse: el actor habrá adquirido una gran masa. Pero si el que aparece es una vieja gloria de Hollywood de la que no se acuerda ni su agente artístico, los paparazzi le dejarán pasar sin apenas oponer resistencia. La masa de la vieja gloria será por tanto muy pequeña. Y uno puede imaginar todo un espectro de masas intermedias.
El bosón de Higgs es también un componente esencial de las actuales teorías sobre el origen del universo, conocidas genéricamente como "inflación cósmica" o "universo inflacionario". La inflación -el bang del big bang, en palabras de Greene- es una expansión cósmica rapidísima, más veloz que la velocidad de la luz, que según estos modelos ocurrió una fracción de segundo después del origen del cosmos.
La inflación parece una teoría extraña, pero es necesaria para explicar que el universo actual sea homogéneo a gran escala: es decir, que consista en todas partes del mismo tipo de agregados de galaxias y supercúmulos de galaxias, pese a que las regiones distantes del cosmos no han tenido ocasión de interactuar para ponerse de acuerdo sobre cuáles han de ser sus propiedades básicas.
La carrera de los físicos para experimentar en aceleradores de partículas cada vez más potentes puede verse como un viaje hacia atrás en el tiempo. Como el universo era en su origen inconcebiblemente pequeño y denso en energía, y a partir de ahí empezó a expandirse y enfriarse, cada nuevo acelerador emula al universo primigenio en una fase algo anterior de su evolución inicial.
Visto desde el prisma de la unificación de las fuerzas fundamentales, cada incremento en la energía de las colisiones en los aceleradores nos acerca un poco más a la época remota en que todas las fuerzas eran en realidad la misma: como la electricidad y el magnetismo son la misma fuerza en la actualidad, y como el electromagnetismo y la fuerza nuclear débil resultan ser lo mismo a las energías de colisión que se alcanzaron en los años setenta.
En el origen del universo, todas las partículas y todas las fuerzas eran iguales: los campos de fuerza estaban evaporados a aquellas altísimas temperaturas, y sólo se fueron condensando después (donde "después" significa una fracción de segundo).
El campo (o una serie de campos) de Higgs fue el primero en condensarse, y ello eliminó en cascada la simplicidad del universo primitivo: las partículas elementales adquirieron distintas masas, y también los bosones mensajeros, con lo que la única fuerza primordial se separó en las actuales fuerzas fundamentales.
Todas las partículas elementales conocidas tienen masas distintas. Los protones y los neutrones que constituyen el núcleo atómico no son partículas elementales, sino que están hechos de dos tipos de quarks, up y down (un protón consiste en dos quarks up y uno down; un neutrón consiste en dos down y un up). Esto es lo que había predicho la teoría, pero los aceleradores han revelado además otros cuatro tipos de quarks, y todos tienen masas distintas, que cubren un intervalo entre 0,05 y 190 veces la masa del protón.
Todas esas partículas gratuitas con masas tan disparatadas quedarán explicadas si los experimentos proyectados en el LHC logran encontrar el bosón de Higgs. Quizá el apodo de "partícula Dios" que le puso Lederman le quede un poco grande, pero ni siquiera el santo grial ha sido tan buscado en la historia.
Sphere: Related Content
Nenhum comentário:
Postar um comentário